UNIT 2: CHEMICAL BONDING, APPLICATION OF CHEMICAL REACTIONS AND ORGANIC CHEMISTRY HIGHER TIER

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statements.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

	0	-4!				Marks A	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	$2SO_2 + O_2 = 2SO_3 (3)$		3		3	1	
			If equation not correct award (1) for each of following SO ₂ and O ₂ on reactant side SO ₃ on product side						
		(ii)	30 % (2)		2		2	2	
			If answer is incorrect award (1) for 86 or 56 read from graph						
		(iii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ (2)		2		2	1	
			If equation not correct award (1) for either of following SO_3 and H_2SO_4 oleum formula based on incorrect reactant hydrogen, sulfur and oxygen atoms only e.g. $H_2S_2O_6$ if sulfuric acid given as H_2SO_3						
	(b)		Copper(II) sulfate turns from <u>blue to white</u> (1) Any one of the following for (1)						
			Crystals become powdery / crumbly Loses its crystalline appearance						
			Dehydrating agent (1)	3			3		3
			Question 1 total	3	7	0	10	4	3

	0	ation.	Moulding details	Marks Available							
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
2	(a)	(i)	Correct transfer of both outer shell potassium electrons to the oxygen atom (1)		1		1				
		(ii)	All four electronic configurations and charges correct (2) Any two correct (1)		2		2				
			potassium ions (2,8,8) K ⁺								
			oxide ions (2.8) O^{2-}								
	(b)		Diagram shows shared pair of electrons between oxygen and both hydrogen atoms (1)		2		2				
			Octet of electrons around oxygen atom and only two around both hydrogen atoms (1)								
	(c)		C (1)								
			Conducts electricity in its solid form (1)			2	2				

	0		Mauking dataila			Marks A	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
2	(d)		Award (1) each for up to three of following properties with explanation	3			3		
			Conducts electricity – free electrons carrying the charge Malleable / can be hammered into shape / bent into shape – layers of ions can slide over each other Ductile / can be drawn into a wire – layers of ions can slide over each other High density – ions are tightly packed High melting / boiling point – ions are tightly packed If no creditworthy explanations given award (1) for two correct properties						
			Question 2 total	3	5	2	10	0	0

	0110	stion	Marking details				Marks A	vailable		
	Que	Suon			AO1	AO2	AO3	Total	Maths	Prac
3	(a)		Bubbles form because a gas, carbon dioxide, is pro	oduced ✓	1			1		
	(b)		Suggested explanation of where the carbon atoms come from some carbon atoms come from the sugars yes some carbon atoms come from the yeast some carbon atoms come from the solution No Award (1) for all correct answers	No s			3	3		
	(c)		Award (1) for each of following Experiment 2 – no change; no yeast therefore no re Experiment 1 – no change; reaction takes place but escape as container is sealed Experiment 3 – mass decreases; reaction takes place escapes from container	t gas cannot			3	3		3
			Question 3 total		1	0	6	7	0	3

	0110	stion			Markin	a dotaila					Marks A	Available		
	Que	:อแบท				ng details			AO1	AO2	AO3	Total	Maths	Prac
4	(a)		Iron is mor	e reactive	than copp	er (1)			1					
			Displaceme	ent reactio	on occurs /	iron displa	aces the o	copper (1)	1					
			Products – Accept iror		xide and c	opper (1)				1		3		
	(b)		Cu + 2Ag	$NO_3 \rightarrow C$	Cu(NO ₃) ₂ -	+ 2Ag (2	()			2		2		
			If equation appropriate		ct award (1) for AgNC)₃ and Ag	included on						
	(c) (i)	(i)	Mass of		Mass	of copper forme	ed (g)							
			magnesium added (g)	Student 1	Student 2	Student 3	Mean result	Theoretical result						
			0.10	0.15	0.13	0.14	0.14	0.26						
			0.15	0.25	0.21	0.23	0.23	0.40						
			0.20	0.35	0.37	0.28	0.35	0.54			1	1		1
			0.25	0.41	0.45	0.39	0.39	0.68			'	,		
			Both ident	ified										
		(ii)	The greate deposited Accept mo					ore copper		1		1		1
		(iii)	The evider	ce for this	conclusio	n is stron ç	g because	e:						
			Each stude				are repro	ducible			1	1		1
			Credit for r	eason										

	0	otion	Mayking dataila			Marks A	Available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(c)	(iv)	Award (1) each for up to two possible issues that would lead to a reduction in the mass of copper						
			Not all magnesium reacted / insufficient stirring / reaction time Magnesium not clean / had reacted before experiment / turned to oxide Not all copper retrieved / copper left behind in beaker / filter			2	2		2
		(v)	0.96 g (1)						
			increase of 0.14g per 0.05g magnesium added (1)			2	2	2	
			Question 4 total	2	4	6	12	2	5

	0	-4!	Mandan a datatla			Marks A	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
5	(a)	(i)	Award (2) for any four of following points Award (1) for any two Formed from the remains of marine life / remains sea animals and plants Buried / compacted under sediment (over time) No oxygen Change chemically / turn to oil under heat and pressure Over millions of years	2			2		
		(ii)	Crude oil is heated until it boils / evaporates (1) Compounds with longer chain lengths have higher boiling points / shorter chain lengths have lower boiling points (1) Higher the boiling point the lower down the column the compounds condense (1) Compounds with similar chain lengths condense at similar temperatures and are collected as part of the same fraction (1)	4			4		
	(b)		Energy required (in breaking bonds) = 4722 (2) If incorrect award (1) for identification of bonds broken Energy released (in forming bonds) = 5756 (2) If incorrect award (1) for identification of bonds formed Difference between energy required and energy released is 1034 kJ and more energy given out than taken in therefore the reaction is exothermic and has negative value (1) or Overall energy change = energy required – energy released = 4722 – 5756 = -1034 kJ (1)		5		5	5	
			Question 5 total	6	5	0	11	5	0

	0	-41		Maukina datail				Marks A	vailable		
		stion		Marking detail		AO1	AO2	AO3	Total	Maths	Prac
6	(a)		All four names at Any two correct	nd formulae correct (2) (1))	2			2		
			Pair of Compounds	Family to which the pair of compounds belong	General molecular formula for the family						
			A and C	Alkanes	CnH2n+2						
			E and F	Alkenes	C2H2n						
	(b)		Add bromine wat	. ,			1				
			Stays brown/orange to	nge/red/no reaction wit colourless (1)	h C and E turns from	1			2		2
	(c)	(i)	Same molecular	formula but different st	tructure	1			1		
		(ii)	H——C——C——C——H——H——H——H——H——H——H——H——H——H	-н		1			1		
	(d)		D has an isomer	- no credit for identific	ation alone						
			H OH H H C C C C C - H H H H	н (1) pro	pan-2-ol (1)		2		2		
			Question 6 tota	I		5	3	0	8	0	0

	0	otion	Maybing dataila			Marks A	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)	Reagent X – sodium hydroxide (solution) / NaOH (1)	1					
			Reagent Y – silver nitrate (solution) / AgNO ₃ (1)	1					
			Solution A – iron(II) sulfate / FeSO ₄ (1)			1			
			Solution B – ammonium carbonate / $(NH_4)_2CO_3$ (1)			1	4		4
		(ii)	$Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + H_2O + CO_2$ (2)		2		2	1	
			If equation is not correct award (1) for NaNO ₃ and H ₂ O and CO ₂ on product side						
	(b)		$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_2(s)$ (2)	1					
			If state symbols missing or incorrect award (1) for correct reactants and product		1		2	2	
			Question 7 total	3	3	2	8	3	4

Overtion	Moulting details			Marks A	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	Indicative content Aluminium oxide heated until molten (cryolite added to lower melting point) $Al^{3^{+}} \text{ and } O^{2^{-}} \text{ ions free to move in molten state}$ $Al^{3^{+}} \text{ ions attracted to cathode where they gain electrons and form atoms}$ $Al^{3^{+}} + 3e^{-} \rightarrow Al$ $Molten aluminium falls to bottom of cell$ $O^{2^{-}} \text{ ions attracted to anodes}$ $O^{2^{-}} \text{ ions lose electrons forming oxygen molecules}$ $2O^{2^{-}} \rightarrow O_{2} + 2e^{-}$ $Overall \text{ reaction is } 2Al_{2}O_{3} \rightarrow 4Al + 3O_{2}$	6			6		
	5–6 marks All key points included, explanation in terms of electron gain/loss, electrode equations and overall equation There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.						
	3–4 marks Reference to aluminium oxide being molten, movement of ions and good attempt at electrode equation(s) or overall equation There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.						

 1–2 marks Minimum of three points including two linked points e.g. molten therefore ions free to move There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. O marks No attempt made or no response worthy of credit. 						
Question 8 total	6	0	0	6	0	0

	0	-ti	Maybing dataila		Marks Available						
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
9	(a)		0.24 (2)								
			If answer is incorrect award (1) for 0.06 mol or Calculated number of mol divided by 0.25		2		2	2	2		
	(b)	(i)	Allows more precision in adding acid / acid to be added in smaller quantities (1)								
			End point is identified more accurately identifies / less error in recorded end point (1)	2			2		2		
		(ii)	Allow error carried forward from part (a)								
			Mean volume acid = 16.0 (1)	1							
			n(NaOH) = 0.006 (1) $n(H_2SO_4) = 0.003$ (1) Concentration = 0.1875 (1)		1 1 1		4	4			
			Award (4) for correct answer only Error carried forward throughout								
			Question 9 total	3	5	0	8	6	4		